
Improving Scalability Of Storage System:Object
Storage Using Open Stack Swift

G.Kathirvel Karthika1,R.C.Malathy2,M.Keerthana3

1,2,3 Student of Computer Science and Engineering ,
R.M.K Engineering College,Kavaraipettai.

Abstract— Distributed object-based storage models are an
increasingly popular alternative to traditional block-based or
file-based storage abstractions in large-scale storage systems.
Simple operations such as listing all files in a directory or
updating metadata such as file ownership can become
tremendously time-consuming. The burden of reliability,
availability, and durability in file storage resides with the user
by having to correctly use tools such as replication,RAID
rebuild, and backup.For Storage growth using file storage is
very difficult.Clustered file systems have somewhat reduced
this problem, but not to the ease of growing storage .File
systems enable sharing across servers, they don’t help with
sharing of data across applications. Only the application or a
database controlled by the application knows where a file is
and this information is unavailable to other applications.
Object storage systems are eventually consistent.Eventual
consistency can provide virtually unlimited scalability. It
ensures high availability for data that needs to be durably
stored but is relatively static and will not change much, if at
all. This is why storing photos, video, and other unstructured
data is an ideal use case for object storage systems.Integrate
your applications with object-store interface through Simple
or Named Object HTTP. The client application houses the
metadata and the Simple or Named Object interface is
accessed using HTTP/REST API. Similar to retrieving a URL
instead of asking for a Web page, you are asking for an object.
The process tolerates Internet latency, provides for
programmable storage and efficient metadata management.In
this paper,we investigate about the object storage using open
stack swift.

keywords—objectstorage,swift,scalability,cloud environment,
redundancy

I. INTRODUCTION

 Storage technology has improved rapidly, particularly
in terms of storage density; but storage throughput has not
kept pace with advances in computational performance.
This trend has led to increased demand for large-scale
storage systems that aggregate and coordinate many storage
devices, in turn driving the need for better abstractions to
manage those storage devices. Object-based storage [1], [2]
has emerged as a strong competitor for the block-based
model, quickly becoming a popular underlying model for
referencing and accessing data distributed over large
numbers of storage devices in these systems. An object is an
ordered logical collection of bytes with a numerical
identifier. Objects consist of data, attributes describing the
object, such as QoS attribute, and devicemanaged metadata,
such as security information [1], [3]. Objects have variable
sizes and can be used to store any kind of data. The object
storage model abstracts away a variety of resource-specific

management tasks, such as block allocation, space
management, and various forms of atomicity. However, it
still allows considerable flexibility for a variety of
higherlevel data models to be built atop it. Although object
models Object Storage Abstraction Common storage system
functionality (resilience, management, etc.) File System 1
Key/Value Store MapReduce File System 2 Data model
instances Storage pool Unified object storage system were
originally envisioned as a device-level interface [2], today’s
large-scale storage systems more commonly repurpose the
object model as a software interface atop a variety of
storage substrates [4], [5], [6], [7]. Although several object-
based storage models have been implemented and used as
the basis for the popular storage and file systems [8], [9],
[7], [3], existing object-based storage models are typically
tailored to a particular use case or data model, making them
difficult to reuse in other contexts. This situation also makes
it difficult to share a common storage pool for different big
data, cloud storage, or HPC storage tasks, increasing
management overhead and adding complexity to the task of
storage provisioning for facilities with diverse storage
needs. The following list divides them into four categories
with representative examples:
• Parallel file systems: Lustre [10], GPFS [11], Panasas

[3], PVFS [12], Ceph [8]
• Cloud object storage: Amazon S3 [12], Swift [12],
• MapReduce: Google File System (GFS) , Hadoop HDFS
• Key/value stores: Dynamo,Redis , Hyperdex , Cassandra

, HBase , BigQuery .
 Note that these data models aren’t necessarily

mutually exclusive. For example, several parallel file
systems have been extended to support MapReduce
workloads. We will refer to these classifications in the
remainder of the paper for clarity, however, in order to
simplify the discussion of use cases and requirements that
are shared across groups of storage systems.

II. SWIFT CHARACTERISTICS:
 Here is a quick summary of Swift’s characteristics:

• Swift is an object storage system that is part of the
openStack project.

• Swift is open-source and freely available.
• Swift currently powers the largest object storage

clouds, including Rackspace Cloud Files, the HP
Cloud, IBM Softlayer Cloud and countless private
object storage clusters.

• Swift can be used as a stand-alone storage system
or as part of a cloud compute environment.

G.Kathirvel Karthika et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1541-1546

www.ijcsit.com 1541

• Swift runs on standard Linux distributions and on
standard x86 server hardware.

• Swift—like Amazon S3—has an eventual
consistency architecture, which make it ideal for
building massive, highly distributed
infrastructures with lots of unstructured data
serving global sites.

• All objects (data) stored in Swift have a URL.
• All objects are stored with multiple copies and are

replicated in as-unique-as-possible availability
zones and/or regions.

• Swift is scaled by adding additional nodes, which
allows for a cost-effective linear storage
expansion.

• When adding or replacing hardware, data does not
have to be migrated to a new storage system, i.e.
there are no fork-lift upgrades.

• Failed nodes and drives can be swapped out while
the cluster is running with no downtime. New
nodes and drives can be added the same way.

III.SWIFT REQUESTS
A foundational premise of Swift is that requests are made
via HTTP using a RESTful API. All requests sent to Swift
are made up of at least three parts:

 HTTP verb (e.g., GET, PUT, DELETE)
 Authentication information
 Storage URL
 Optional: any data or metadata to be written

 The HTTP verb provides the action of the request. I
want to PUT this object into the cluster. I want to GET this
account information out of the cluster, etc.
 The authentication information allows the request
to be fulfilled.
 A storage URL in Swift for an object looks like this:
https://swift.example.com/v1/account/container/object
The storage URL has two basic parts:

 cluster location
 storage location.
 This is because the storage URL has two purposes.
 It’s the cluster address where the request should be
sent and it’s the location in the cluster where the
requested action should take place.Using the example
above, we can break the storage URL into its two main
parts:
 Cluster location: swift.example.com/v1/
 Storage location (for an object):

/account/container/object

A storage location is given in one of three formats:
 /account

o The account storage location is a
uniquely named storage area that contains
the metadata (descriptive information)
about the account itself as well as the list
of containers in the account.

o Note that in Swift, an account is not a
user identity. When you hear account,
think storage area.

 /account/container
o The container storage location is the user-

defined storage area within an account
where metadata about the container itself
and the list of objects in the container
will be stored.

 /account/container/object
o The object storage location is where the

data object and its metadata will be
stored.

 Fig
1.account/container/object

 Swift HTTP API:
 Swift's HTTP API is RESTful, meaning that it
exposes every container and object as a unique URL, and
maps HTTP methods (like PUT, GET, POST, and
DELETE) to the common data management operations
(Create, Read, Update, and Destroy—collectively known as
CRUD). GET—downloads objects, lists the contents of
containers or accounts

 PUT—uploads objects, creates containers,
overwrites metadata headers

 POST—creates containers if they don't exist,
updates metadata (accounts or containers),
overwrites metadata (objects)

 DELETE—deletes objects and containers that are
empty

Client Libraries:-Open–source client libraries
are available for most modern programming
languages, including:
 Python
 Ruby
 PHP
 C#/.NET
 Java
 JavaScript

IV. SWIFT OVERVIEW—PROCESSES

 A Swift cluster is the distributed storage system
used for object storage. It is a collection of machines that
are running Swift’s server processes and consistency
services. Each machine running one or more Swift’s
processes and services is called a node.
 The four Swift server processes are proxy,
account, container and object. When a node has only the

G.Kathirvel Karthika et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1541-1546

www.ijcsit.com 1542

proxy server process running it is called a proxy node.
Nodes running one or more of the other server processes
(account, container, or object) will often be called a storage
node.

Fig 2.Storage service

Server Process Layers
Proxy Layer
 The Proxy server processes are the public face of
Swift as they are the only ones that communicate with
external clients. As a result they are the first and last to
handle an API request.
 All requests to and responses from the proxy use
standard HTTP verbs and response codes.
Account Layer
 The account server process handles requests
regarding metadata for the individual accounts or the list of
the containers within each account. This information is
stored by the account server process in SQLite databases on
disk.
Container Layer
 The container server process handles requests
regarding container metadata or the list of objects within
each container.
 It’s important to note that the list of objects doesn’t
contain information about the location of the object, simply
that it belong to a specific container. Like accounts, the
container information in stored as SQLite databases.
Object Layer
 The object server process is responsible for the
actual storage of objects on the drives of its node. Objects
are stored as binary files on the drive using a path that is
made up in part of its associated partition (which we will
discuss shortly) and the operation's timestamp.
 The timestamp is important as it allows the object
server to store multiple versions of an object. The object’s
metadata (standard and custom) is stored in the file’s
extended attributes (xattrs) which means the data and
metadata are stored together and copied as a single unit.
Consistency Services
 When account, container or object server processes
are running on node, it means that data is being stored
there. That means consistency services will also be running
on those nodes to ensure the integrity and availability of the
data.
The two main consistency services are auditors and
replicators.
Auditors
 Auditors run in the background on every storage node
in a Swift cluster and continually scan the disks to ensure

that the data stored on disk has not suffered any bit-rot or
file system corruption. There are account auditors,
container auditors and object auditors which run to support
their corresponding server process.
 If an error is found, the auditor moves the corrupted
object to a quarantine area.

Fig 3.Storage Node

Replicators
 Account, container, and object replicator
processes run in the background on all nodes that are
running the corresponding services. A replicator will
continuously examine its local node and compare the
accounts, containers, or objects against the copies on other
nodes in the cluster.
 If one of other nodes has an old or missing copy,
then the replicator will send a copy of its local data out to
that node. Replicators only push their local data out to other
nodes; they do not pull in remote copies in if their local
data is missing or out of date.
 The replicator also handles object and container
deletions. Object deletion starts by creating a zero-byte
tombstone file that is the latest version of the object. This
version is then replicated to the other nodes and the object
is removed from the entire system.

Fig 4.Swift Storage

V. SWIFT OVERVIEW—CLUSTER ARCHITECTURE

Nodes
 A node is a machine that is running one or Swift
processes. When there are multiple nodes running that
provide all the processes needed for Swift to act as a
distributed storage system they are considered to be a
cluster.
 Within a cluster the nodes will also belong to two
logical groups: regions and nodes.
Regions
 Regions are user-defined and usually indicate when
parts of the cluster are physically separate --usually a
geographical boundary.

G.Kathirvel Karthika et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1541-1546

www.ijcsit.com 1543

 A cluster has a minimum of one region and there are
many single region clusters as a result. A cluster that is
using two or more regions is a multi-region cluster.

Fig 5.Regions

Zones:
 Within regions, Swift allows allows availability
zones to be configured to isolate failure boundaries. An
availability zone should be defined by a distinct set of
physical hardware whose failure would be isolated from
other zones.
 In a large deployment, availability zones may be
defined as unique facilities in a large data center campus. In
a single datacenter deployment, the availability zones may
be different racks. While there does need to be at least one
zone in a cluster, it is far more common for a cluster to
have many zones.

Fig 6.Zones

VI. SWIFT OVERVIEW—DATA PLACEMENT
 When the server processes or the consistency
services need to locate data it will look at the storage
location (/account, /account/container,
/account/container/object) and consult one of the three
rings: account ring, container ring or object ring.
 Each Swift ring is a modified consistent hashing ring
that is distributed to every node in the cluster. The boiled
down version is that a modified consistent hashing ring
contains a pair of lookup tables that the Swift processes and
services use to determine data locations.
 One table has the information about the drives in the
cluster and the other has the table used to look up where
any piece of account, container or object data should be
placed.

 That second table—where to place things—is the more
complicated one to populate. Before we discuss the rings
and how they are built any further we should cover
partitions and replicas as they are critical concepts to
understanding the rings.

Partitions
 Swift wants to store data uniformly across the cluster
and have it be available quickly for requests. Never ones to
shy away from a good idea, the developers of Swift have
tried various methods and designs before settling on the
current variation of the modified consistent hashing ring.
 Hashing is the key to the data locations. When a
process, like a proxy server process, needs to find where
data is stored for a request, it will call on the appropriate
ring to get a value that it needs to correctly hash the storage
location (the second part of the storage URL). The hash
value of the storage location will map to a partition value.
 This hash value will be one of hundreds or thousands
of hash values that could be calculated when hashing
storage locations. The full range of possible hash values is
the “hashing ring” part of a modified consistent hashing
ring.
 The “consistent” part of a modified consistent hashing
ring is where partitions come into play. The hashing ring is
chopped up into a number of parts, each of which gets a
small range of the hash values associated to it. These parts
are the partitions that we talk about in Swift.
 One of the modifications that makes Swift’s hash ring
a modified consistent hashing ring is that the partitions are
a set number and uniform in size. As a ring is built the
partitions are assigned to drives in the cluster. This
implementation is conceptually simple—a partition is just a
directory sitting on a disk with a corresponding hash table
of what it contains.

Fig 7.Partition

The relationship of a storage node, disk and a partition.
Storage nodes have disks. Partitions are represented as
directories on each disk.
While the size and number of partitions does not change,
the number of drives in the cluster does. The more drives in
a cluster the fewer partitions per drive. For a simple
example, if there were 150 partitions and 2 drives then each
drive would have 75 partitions mapped to it. If a new drive
is added then each of the 3 drives would have 50 partitions.

G.Kathirvel Karthika et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1541-1546

www.ijcsit.com 1544

Fig 8.Rings

Replicas
 Swift’s durability and resilience to failure
depends in large part on its replicas. The more replicas
used, the more protection against losing data when there is
a failure. This is especially true in clusters that have
separate datacenters and geographic regions to spread the
replicas across.
 When we say replicas, we mean partitions that
are replicated. Most commonly a replica count of three is
chosen. During the initial creation of the Swift rings, every
partition is replicated and each replica is placed as uniquely
as possible across the cluster. Each subsequent rebuilding
of the rings will calculate which, if any, of the replicated
partitions need to be moved to a different drive. Part of
partition replication including designating handoff drives.
 When a drive fails, the replication/auditing
processes notice and push the missing data to handoff
locations. The probability that all replicated partitions
across the system will become corrupt (or otherwise fail)
before the cluster notices and is able to push the data to
handoff locations is very small, which is why we say that
Swift is durable.
 Previously we talked about a proxy server
processes using a hash of the data’s storage location to
determine where in the cluster that data was located. We
can now be more precise and say that the proxy server
process is locating the three replicated partitions each of
which contains a copy of the data.

Fig 9.An object ring enables a path /account/container/object path to be
mapped to partitions

The Rings
 With partitions and replicas defined, we can take a
look the data structure of the rings. Each of the Swift rings
is a modified consistent hashing ring. This ring data
structure includes the partition shift value which processes
and services use to determine the hash of a storage location.
It also has two important internal data structures: the
devices list and the devices lookup table.

 The devices list is populated with all the devices that
have been added to a special ring building file. Each entry
for a drive includes its ID number, zone, weight, IP, port,
and device name.
 The devices lookup table has one row per replica and
one column per partition in the cluster. This generates a
table that is typically three rows by thousands of columns.
During the building of a ring, Swift calculates the best
drive to place each partition replica on using the drive
weights and the unique-as-possible placement algorithm. It
then records that drive in the table.

Fig 10.Replicas Chart

 Referring back to that proxy server process that
was looking up data. The proxy server process calculated
the hash value of the storage location which maps to a
partition value. The proxy server process uses this partition
value on the Devices lookup table. The process will check
the first replica row at the partition column to determine the
device ID where the first replica is located. The process
will search the next two rows to get the other two locations.
In our figure the partition value was 2 and the process
found that the data was located on drives 1, 8 and 10.
 The proxy server process can then make a second
set of searches on the Devices list to get the information
about all three drives, including ID numbers, zones,
weights, IPs, ports, and device names. With this
information the process can call on the correct drives. In
our examle figure, the process determined the ID number,
zone, weight, IP, port, and device name for device 1.

Fig 10.Dev Chart

REFERENCES
[1] M. Mesnier, G. Ganger, and E. Riedel, “Object-based Storage,”

Communications Magazine, IEEE, vol. 41, no. 8, pp. 84 – 90, aug.
2003.

[2] T10 Technical Committee of the InterNational Committee on
Information Technology Standards, “Object-based Storage Devices -
3 (OSD-3).”

[3] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable Performance of the Panasas
Parallel File System,” in In FAST-2008: 6th Usenix Conference on
File and Storage Technologies, 2008, pp. 17–33.

[4] A. Devulapalli, D. Dalessandro, P. Wyckoff, and N. Ali, “Attribute
Storage Design for Object-based Storage Devices,” in MSST ’07:
Proceedings of the 24th IEEE Conference on Mass Storage Systems
and Technologies. Washington, DC: IEEE Computer Society, 2007,
pp. 263–268.

[5] A. Devulapalli and N. Ali, “Integrating Parallel File Systems with
Object-based Storage Devices,” in Proceedings of Supercomputing,
2007. [6] “Librados API documentation.”

[6] Oracle Corporation, “Lustre File System.”
[7] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.

Maltzahn, “Ceph: A Scalable, High-Performance Distributed File

G.Kathirvel Karthika et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1541-1546

www.ijcsit.com 1545

System,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI, 2006, pp. 307–320.

[8] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a
Needle in Haystack: Facebook’s Photo Storage,” in Proceedings of
the 9th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–8.

[9] “Lustre: A Scalable, High-Performance File System,” Cluster File
Systems Inc. white paper, version 1.0, November 2002.

[10] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002.

[11] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A
Parallel File System for Linux Clusters,” in Proceedings of the 4th
Annual Linux Showcase and Conference. Atlanta, GA: USENIX
Association, October 2000, pp. 317–327.

G.Kathirvel Karthika et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1541-1546

www.ijcsit.com 1546

