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Abstract— Distributed object-based storage models are an 
increasingly popular alternative to traditional block-based or 
file-based storage abstractions in large-scale storage systems. 
Simple operations such as listing all files in a directory or 
updating metadata such as file ownership can become 
tremendously time-consuming. The burden of reliability, 
availability, and durability in file storage resides with the user 
by having to correctly use tools such as replication,RAID 
rebuild, and backup.For Storage growth using file storage is 
very difficult.Clustered file systems have somewhat reduced 
this problem, but not to the ease of growing storage .File 
systems enable sharing across servers, they don’t help with 
sharing of data across applications. Only the application or a 
database controlled by the application knows where a file is 
and this information is unavailable to other applications. 
Object storage systems are eventually consistent.Eventual 
consistency can provide virtually unlimited scalability. It 
ensures high availability for data that needs to be durably 
stored but is relatively static and will not change much, if at 
all. This is why storing photos, video, and other unstructured 
data is an ideal use case for object storage systems.Integrate 
your applications with object-store interface through Simple 
or Named Object HTTP. The client application houses the 
metadata and the Simple or Named Object interface is 
accessed using HTTP/REST API. Similar to retrieving a URL 
instead of asking for a Web page, you are asking for an object. 
The process tolerates Internet latency, provides for 
programmable storage and efficient metadata management.In 
this paper,we investigate about the object storage using open 
stack swift. 
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I. INTRODUCTION

   Storage technology has improved rapidly, particularly 
in terms of storage density; but storage throughput has not 
kept pace with advances in computational performance. 
This trend has led to increased demand for large-scale 
storage systems that aggregate and coordinate many storage 
devices, in turn driving the need for better abstractions to 
manage those storage devices. Object-based storage [1], [2] 
has emerged as a strong competitor for the block-based 
model, quickly becoming a popular underlying model for 
referencing and accessing data distributed over large 
numbers of storage devices in these systems. An object is an 
ordered logical collection of bytes with a numerical 
identifier. Objects consist of data, attributes describing the 
object, such as QoS attribute, and devicemanaged metadata, 
such as security information [1], [3]. Objects have variable 
sizes and can be used to store any kind of data. The object 
storage model abstracts away a variety of resource-specific 

management tasks, such as block allocation, space 
management, and various forms of atomicity. However, it 
still allows considerable flexibility for a variety of 
higherlevel data models to be built atop it. Although object 
models Object Storage Abstraction Common storage system 
functionality (resilience, management, etc.) File System 1 
Key/Value Store MapReduce File System 2 Data model 
instances Storage pool Unified object storage system  were 
originally envisioned as a device-level interface [2], today’s 
large-scale storage systems more commonly repurpose the 
object model as a software interface atop a variety of 
storage substrates [4], [5], [6], [7]. Although several object-
based storage models have been implemented and used as 
the basis for the popular storage and file systems [8], [9], 
[7], [3], existing object-based storage models are typically 
tailored to a particular use case or data model, making them 
difficult to reuse in other contexts. This situation also makes 
it difficult to share a common storage pool for different big 
data, cloud storage, or HPC storage tasks, increasing 
management overhead and adding complexity to the task of 
storage provisioning for facilities with diverse storage 
needs.   The following list divides them into four categories 
with representative examples: 
• Parallel file systems: Lustre [10], GPFS [11], Panasas

[3], PVFS [12], Ceph [8] 
• Cloud object storage: Amazon S3 [12], Swift [12],
• MapReduce: Google File System (GFS) , Hadoop HDFS
• Key/value stores: Dynamo,Redis , Hyperdex , Cassandra

, HBase , BigQuery . 
      Note that these data models aren’t necessarily 

mutually exclusive. For example, several parallel file 
systems have been extended to support MapReduce 
workloads. We will refer to these classifications in the 
remainder of the paper for clarity, however, in order to 
simplify the discussion of use cases and requirements that 
are shared across groups of storage systems. 

II. SWIFT CHARACTERISTICS:
  Here is a quick summary of Swift’s characteristics: 

• Swift is an object storage system that is part of the
openStack project.

• Swift is open-source and freely available.
• Swift currently powers the largest object storage

clouds, including Rackspace Cloud Files, the HP
Cloud, IBM Softlayer Cloud and countless private
object storage clusters.

• Swift can be used as a stand-alone storage system
or as part of a cloud compute environment.

G.Kathirvel Karthika et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1541-1546

www.ijcsit.com 1541



• Swift runs on standard Linux distributions and on 
standard x86 server hardware. 

• Swift—like Amazon S3—has an eventual 
consistency architecture, which make it ideal for 
building massive, highly distributed 
infrastructures with lots of unstructured data 
serving global sites. 

• All objects (data) stored in Swift have a URL. 
• All objects are stored with multiple copies and are 

replicated in as-unique-as-possible availability 
zones and/or regions. 

• Swift is scaled by adding additional nodes, which 
allows for a cost-effective linear storage 
expansion. 

• When adding or replacing hardware, data does not 
have to be migrated to a new storage system, i.e. 
there are no fork-lift upgrades. 

• Failed nodes and drives can be swapped out while 
the cluster is running with no downtime. New 
nodes and drives can be added the same way. 
 

III.SWIFT REQUESTS 
A foundational premise of Swift is that requests are made 
via HTTP using a RESTful API. All requests sent to Swift 
are made up of at least three parts: 

 HTTP verb (e.g., GET, PUT, DELETE) 
 Authentication information 
 Storage URL 
 Optional: any data or metadata to be written 

           The HTTP verb provides the action of the request. I 
want to PUT this object into the cluster. I want to GET this 
account information out of the cluster, etc. 
          The authentication information allows the request 
to be fulfilled. 
          A storage URL in Swift for an object looks like this: 
https://swift.example.com/v1/account/container/object 
The storage URL has two basic parts:  

 cluster location  
 storage location.  
 This is because the storage URL has two purposes. 
 It’s the cluster address where the request should be 
sent and it’s the location in the cluster where the 
requested action should take place.Using the example 
above, we can break the storage URL into its two main 
parts: 
 Cluster location: swift.example.com/v1/ 
 Storage location (for an object): 

/account/container/object 
 

A storage location is given in one of three formats: 
 /account 

o The account storage location is a 
uniquely named storage area that contains 
the metadata (descriptive information) 
about the account itself as well as the list 
of containers in the account. 

o Note that in Swift, an account is not a 
user identity. When you hear account, 
think storage area. 

 /account/container 
o The container storage location is the user-

defined storage area within an account 
where metadata about the container itself 
and the list of objects in the container 
will be stored. 

 /account/container/object 
o The object storage location is where the 

data object and its metadata will be 
stored. 

 
                                         Fig 
1.account/container/object 

  Swift HTTP API:  
             Swift's HTTP API is RESTful, meaning that it 
exposes every container and object as a unique URL, and 
maps HTTP methods (like PUT, GET, POST, and 
DELETE) to the common data management operations 
(Create, Read, Update, and Destroy—collectively known as 
CRUD). GET—downloads objects, lists the contents of 
containers or accounts 

 PUT—uploads objects, creates containers, 
overwrites metadata headers 

 POST—creates containers if they don't exist, 
updates metadata (accounts or containers), 
overwrites metadata (objects) 

 DELETE—deletes objects and containers that are 
empty 

Client Libraries:-Open–source client libraries 
are available for most modern programming 
languages, including: 
 Python 
 Ruby 
 PHP 
 C#/.NET 
 Java 
 JavaScript 

 
IV. SWIFT OVERVIEW—PROCESSES 

                 A Swift cluster is the distributed storage system 
used for object storage. It is a collection of machines that 
are running Swift’s server processes and consistency 
services. Each machine running one or more Swift’s 
processes and services is called a node. 
                The four Swift server processes are proxy, 
account, container and object. When a node has only the 
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proxy server process running it is called a proxy node. 
Nodes running one or more of the other server processes 
(account, container, or object) will often be called a storage 
node. 

 
Fig 2.Storage service 

 
Server Process Layers 
Proxy Layer 
            The Proxy server processes are the public face of 
Swift as they are the only ones that communicate with 
external clients. As a result they are the first and last to 
handle an API request.  
            All requests to and responses from the proxy use 
standard HTTP verbs and response codes. 
Account Layer 
            The account server process handles requests 
regarding metadata for the individual accounts or the list of 
the containers within each account. This information is 
stored by the account server process in SQLite databases on 
disk. 
Container Layer 
            The container server process handles requests 
regarding container metadata or the list of objects within 
each container. 
             It’s important to note that the list of objects doesn’t 
contain information about the location of the object, simply 
that it belong to a specific container. Like accounts, the 
container information in stored as SQLite databases. 
Object Layer 
             The object server process is responsible for the 
actual storage of objects on the drives of its node. Objects 
are stored as binary files on the drive using a path that is 
made up in part of its associated partition (which we will 
discuss shortly) and the operation's timestamp. 
             The timestamp is important as it allows the object 
server to store multiple versions of an object. The object’s 
metadata (standard and custom) is stored in the file’s 
extended attributes (xattrs) which means the data and 
metadata are stored together and copied as a single unit. 
Consistency Services 
          When account, container or object server processes 
are running on node, it means that data is being stored 
there. That means consistency services will also be running 
on those nodes to ensure the integrity and availability of the 
data. 
The two main consistency services are auditors and 
replicators.  
Auditors 
        Auditors run in the background on every storage node 
in a Swift cluster and continually scan the disks to ensure 

that the data stored on disk has not suffered any bit-rot or 
file system corruption. There are account auditors, 
container auditors and object auditors which run to support 
their corresponding server process. 
         If an error is found, the auditor moves the corrupted 
object to a quarantine area. 

 
Fig 3.Storage Node 

Replicators 
                  Account, container, and object replicator 
processes run in the background on all nodes that are 
running the corresponding services. A replicator will 
continuously examine its local node and compare the 
accounts, containers, or objects against the copies on other 
nodes in the cluster. 
                 If one of other nodes has an old or missing copy, 
then the replicator will send a copy of its local data out to 
that node. Replicators only push their local data out to other 
nodes; they do not pull in remote copies in if their local 
data is missing or out of date. 
              The replicator also handles object and container 
deletions. Object deletion starts by creating a zero-byte 
tombstone file that is the latest version of the object. This 
version is then replicated to the other nodes and the object 
is removed from the entire system. 

 
Fig 4.Swift Storage 

  
V. SWIFT OVERVIEW—CLUSTER ARCHITECTURE 

Nodes 
      A node is a machine that is running one or Swift 
processes. When there are multiple nodes running that 
provide all the processes needed for Swift to act as a 
distributed storage system they are considered to be a 
cluster. 
     Within a cluster the nodes will also belong to two 
logical groups: regions and nodes.  
Regions 
        Regions are user-defined and usually indicate when 
parts of the cluster are physically separate --usually a 
geographical boundary. 
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       A cluster has a minimum of one region and there are 
many single region clusters as a result. A cluster that is 
using two or more regions is a multi-region cluster. 

 
Fig 5.Regions 

 

Zones: 
              Within regions, Swift allows allows availability 
zones to be configured to isolate failure boundaries. An 
availability zone should be defined by a distinct set of 
physical hardware whose failure would be isolated from 
other zones. 
               In a large deployment, availability zones may be 
defined as unique facilities in a large data center campus. In 
a single datacenter deployment, the availability zones may 
be different racks. While there does need to be at least one 
zone in a cluster, it is far more common for a cluster to 
have many zones. 
 

 
Fig 6.Zones 

 

VI. SWIFT OVERVIEW—DATA PLACEMENT 
          When the server processes or the consistency 
services need to locate data it will look at the storage 
location (/account, /account/container, 
/account/container/object) and consult one of the three 
rings: account ring, container ring or object ring. 
         Each Swift ring is a modified consistent hashing ring 
that is distributed to every node in the cluster. The boiled 
down version is that a modified consistent hashing ring 
contains a pair of lookup tables that the Swift processes and 
services use to determine data locations. 
         One table has the information about the drives in the 
cluster and the other has the table used to look up where 
any piece of account, container or object data should be 
placed. 
 

      That second table—where to place things—is the more 
complicated one to populate. Before we discuss the rings 
and how they are built any further we should cover 
partitions and replicas as they are critical concepts to 
understanding the rings. 
 
Partitions 
          Swift wants to store data uniformly across the cluster 
and have it be available quickly for requests. Never ones to 
shy away from a good idea, the developers of Swift have 
tried various methods and designs before settling on the 
current variation of the modified consistent hashing ring. 
       Hashing is the key to the data locations. When a 
process, like a proxy server process, needs to find where 
data is stored for a request, it will call on the appropriate 
ring to get a value that it needs to correctly hash the storage 
location (the second part of the storage URL). The hash 
value of the storage location will map to a partition value. 
       This hash value will be one of hundreds or thousands 
of hash values that could be calculated when hashing 
storage locations. The full range of possible hash values is 
the “hashing ring” part of a modified consistent hashing 
ring. 
        The “consistent” part of a modified consistent hashing 
ring is where partitions come into play. The hashing ring is 
chopped up into a number of parts, each of which gets a 
small range of the hash values associated to it. These parts 
are the partitions that we talk about in Swift. 
        One of the modifications that makes Swift’s hash ring 
a modified consistent hashing ring is that the partitions are 
a set number and uniform in size. As a ring is built the 
partitions are assigned to drives in the cluster. This 
implementation is conceptually simple—a partition is just a 
directory sitting on a disk with a corresponding hash table 
of what it contains. 
 

 
Fig 7.Partition 

 

The relationship of a storage node, disk and a partition. 
Storage nodes have disks. Partitions are represented as 
directories on each disk. 
While the size and number of partitions does not change, 
the number of drives in the cluster does. The more drives in 
a cluster the fewer partitions per drive. For a simple 
example, if there were 150 partitions and 2 drives then each 
drive would have 75 partitions mapped to it. If a new drive 
is added then each of the 3 drives would have 50 partitions. 
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Fig 8.Rings 

 
Replicas 
                  Swift’s durability and resilience to failure 
depends in large part on its replicas. The more replicas 
used, the more protection against losing data when there is 
a failure. This is especially true in clusters that have 
separate datacenters and geographic regions to spread the 
replicas across. 
                  When we say replicas, we mean partitions that 
are replicated. Most commonly a replica count of three is 
chosen. During the initial creation of the Swift rings, every 
partition is replicated and each replica is placed as uniquely 
as possible across the cluster. Each subsequent rebuilding 
of the rings will calculate which, if any, of the replicated 
partitions need to be moved to a different drive. Part of 
partition replication including designating handoff drives.  
                   When a drive fails, the replication/auditing 
processes notice and push the missing data to handoff 
locations. The probability that all replicated partitions 
across the system will become corrupt (or otherwise fail) 
before the cluster notices and is able to push the data to 
handoff locations is very small, which is why we say that 
Swift is durable. 
                   Previously we talked about a proxy server 
processes using a hash of the data’s storage location to 
determine where in the cluster that data was located. We 
can now be more precise and say that the proxy server 
process is locating the three replicated partitions each of 
which contains a copy of the data. 

 
 

Fig 9.An object ring enables a path /account/container/object path to be 
mapped to partitions 

The Rings 
        With partitions and replicas defined, we can take a 
look the data structure of the rings. Each of the Swift rings 
is a modified consistent hashing ring. This ring data 
structure includes the partition shift value which processes 
and services use to determine the hash of a storage location. 
It also has two important internal data structures: the 
devices list and the devices lookup table. 

         The devices list is populated with all the devices that 
have been added to a special ring building file. Each entry 
for a drive includes its ID number, zone, weight, IP, port, 
and device name. 
         The devices lookup table has one row per replica and 
one column per partition in the cluster. This generates a 
table that is typically three rows by thousands of columns. 
During the building of a ring, Swift calculates the best 
drive to place each partition replica on using the drive 
weights and the unique-as-possible placement algorithm. It 
then records that drive in the table. 
 

 
Fig 10.Replicas Chart 

 

                Referring back to that proxy server process that 
was looking up data. The proxy server process calculated 
the hash value of the storage location which maps to a 
partition value. The proxy server process uses this partition 
value on the Devices lookup table. The process will check 
the first replica row at the partition column to determine the 
device ID where the first replica is located. The process 
will search the next two rows to get the other two locations. 
In our figure the partition value was 2 and the process 
found that the data was located on drives 1, 8 and 10. 
                The proxy server process can then make a second 
set of searches on the Devices list to get the information 
about all three drives, including ID numbers, zones, 
weights, IPs, ports, and device names. With this 
information the process can call on the correct drives. In 
our examle figure, the process determined the ID number, 
zone, weight, IP, port, and device name for device 1. 
 

 
Fig 10.Dev Chart 
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